

On-time EM measurements: UTEM system developments

Sixth Decennial International Conference on Mineral Exploration

Workshop 6: Advances in Geophysical Technology Workshop - October 22, 2017

Yves Lamontagne, Rob Langridge

Summary

- 1. Why "on-time" EM measurements?
- 2. UTEM transmitter developments
- 3. UTEM sensor developments
- 4. UTEM receiver developments
- 5. System performance in exploration
- 6. Looking forward

The TX current waveform is not the system response

Sensitivity vs decay time

On-time vs
Off-time

CONDITIONS

Exponential decays

Same base frequency

Same TX current

Castle waveform: ramp time/HC = 0.01 off-time sampling

Inductive limit applies for UTEM and B field only

UTEM 5 system characteristics

All components of system linear: exact PE-DC possible

Dynamically regulated TX current waveform

Feedback 3-axis B sensors with wide dynamic range

Advanced signal sampling and stacking

Real time monitoring of measurements

Multiple transmitter operation

UTEM 4 Transmitter block diagram

UTEM 4/UTEM 5 transmitters

MODEL	year	Working input power	Max output current	Max output voltage	Max output power	Cooling
U4ATX	2002	9 kVA	9	525	4.8 kVA	liquid cooling
U4BTX	2005	11 kVA	11	525	5.8 kVA	refrigeration
U5MTX	2011	8.0 kVA	9	600	5.4 kVA	air cooled
U5HTX	2018	3.5 kVA to 11 kVA	15.5	620	3.0 kVA to 9.6 kVA	air cooled

UTEM 4B Transmitter site

Fibre optic bundle

Control unit

Power mainframe

11 kVA input 5.8 kVA output

UTEM 5 Transmitter Development

UTEM 5H TX prototype
H for high efficiency

High power compact design

HF switch-mode operation Current regulation to <0.01% >90% efficiency

Regenerative 4-Q operation

UTEM 5 sensors

Principle of digital feedback B sensor

UTEM 5 surface sensor

UTEM 5 sensors under development

Shielded chamber for BH sensor calibration

UTEM 5 BH system development

UTEM 5 receiver input data

Used for all UTEM 4 and UTEM 5 surveys Fibre-optic digital telemetry from all sensors

B field front end

- simultaneous 3-axis B field data at 100 kHz sampling rate
- 32-bit EM data decoding
- DC correction processing: flat frequency response DC to 10 kHz
- 64-bit time stamps
- Exact deconvolution of transmitter waveform to a square wave

Other data

- 3-axis accelerometer data
- 3-axis magnetometer data (BH)
- Temperature and monitoring data
- All internal sensor and receiver settings

UTEM 5 RX front panel

UTEM 5 receiver in the field

UTEM 5 receiver features

Monitoring, Recording of Measurements

Real time data monitoring during stacking in the field

Optimized for contract survey work

Detect and repeat of bad data at survey time

Immediate in-fill detailing of anomalies

Receiver upload of survey geometry, and reduction settings

Optional viewing of fully reduced data, but raw channel data recorded

Advanced techniques for noise rejection

Pre-emphasis deconvolution
Optional bi-linear tapered channel sampling
Multi-level binomial pre-stack method -> tapered stacking
Multi-frequency and cultural noise exact interleaving
Noise event processing

UTEM 5 receiver: automated frequency interleaving

Sampling of up to 3 sets of channels per component

- · Channel samplings can be for same or different frequencies
- Automated selection of up to 3 interleaved UTEM frequencies
- Rejection of cultural noise frequencies

Sub-stack method for frequency interleaving

a sub-stack length interleaving two base frequencies

UTEM 5 sampling and stacking functions

boxcar and tapered channel sampling functions

Tapered late channels have much better immunity to non-harmonic power line noise at low base frequency

Single tapered sub-stack of a boxcar channel

SAMPLING/STACKING FUNCTION EXAMPLE

Boxcar channel sampling

B_L binomial pre-stacking for L = 5 M half-cycle sub-stack for M = 42 M+L+1 = 48 half-cycles total length (MN+L+1) half-cycles for N sub-stacks

UTEM 5 receiver regular stacking algorithm

FOR EACH CHANNEL, COMPONENT, SAMPLING

Apply half-cycle polarity to each raw channel data time series $H_k = (-1)^k R_k$

Using z-transform notation to channel time series with half-cycle sampling interval

$$X(z) = H_0 + H_1 z^{-1} + H_2 z^{-2} + ... + H_n z^{-n}$$

Binomial decimation (pre-stack)

$$B_0(z) = (1 + z^{-1}) X(z)/2$$

$$B_1(z) = (1 + z^{-1}) B_0(z)/2$$

. . .

$$B_L(z) = (1 + z^{-1}) B_{L-1}(z)/2$$

L 9 to 13 usual for UTEM 5 (L≤31)

B₀ rejects DC in R_k data

B₁ rejects DC and linear drift

...

B_L rejects polynomial to degree L

≈ gaussian weights for large L

Regular sub-stack

$$S_M(z) = (1 + z^{-1} + z^{-2} + z^{-3} + ... + z^{-(M-1)}) B_L(z)/M$$

length M has exact interleaving

Final regular stacking

$$F_N(z) = (1 + z^{-M} + z^{-2M} + z^{-3M} + ... + z^{-(N-1)(M-1)}) S_M(z)/N$$

use full sub-stacks only

UTEM 5 noise event processing

OV and OT events indicated in progress bars

Green OK

Red

OV: -> reject whole stack ("reject")

or reset sensor ("reject-reject")

OT: -> reject whole sub-stack ("trim")

or (experimental speculative processing?)

or <u>prune discrete event</u>

Effective weights when pruning a discrete event

$$P_M(z) = S_M(z) - g(B_k(z) z^{-n} - B_k(z) z^{-n-1} \dots)/M$$
 $k \le L$ Usually at low frequency: L=11, k=5

Correcting weights of a later sub-stack to preserve interleaving

$$Q_M(z) = z^{+nM} (S_M(z) + g(B_k(z) z^{-n} + B_k(z) z^{-n-1} - ...)/M)$$

Size of detection from % primary field error and depth

2 to 3 times higher than in a shielded enclosure

Distance from 1500m loop

Model for a UTEM 5 surface exploration scenario

Low noise scenario

High noise scenario

Looking forward

Surface mineral exploration to more than 1000m depth
Borehole exploration to 1000m distance around deep holes
Using wide bandwidth for target discrimination
Use of 3D volume modelling tools to guide EM exploration

